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Informal Intro

Standard deep learning
(CNNs, RNNs, ..., etc.)

Bayesian deep learning

▶ Imagine that we trained a CNN to classify
dog breeds

▶ What happens when executed on this one?

▶ Gives the ability to models to say ”I am not
sure!”

▶ Learns distributions over the weights to tell
how likely a model fits the data, and

▶ Provides uncertainty estimates

Yarin’s question:
Do we need to replace our standard models?
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What Uncertainties Matter?

I. Epistemic Uncertainty II. Aleatoric Uncertainty

▶ Uncertainty that we can mitigate by adding
more data

▶ Adding more data would not decrease
uncertainty
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Bayesian Deep Learning
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Standard vs Bayesian Deep Learning

Standard deep learning Bayesian deep learning

▶ Finds a point estimate (model) that
minimizes some loss function

▶ Evaluates predictive distributions via marginalization

p(y|x,X,Y) =

∫
p(y|x,ω)p(ω|X,Y)dω

▶ Assumption: p(y|x,ω) = N (y; fω(x), τ−1I), with τ is
said to be the model precision. (We’ll revisit this
assumption.)

▶ However, the posterior distribution

p(ω|X,Y) =
p(Y|X,ω)p(ω)

p(Y|X)

is intractable.
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Variational Inference: Back to Optimization

▶ Approximate the posterior p(ω|X,Y) with a parameterized distribution qθ(ω)

▶ The goal is to solve
θ∗ ∈ argmin

θ
KL
(
qθ(ω) || p(ω|X,Y)

)
▶ Finding an equivalent problem

KL
(
qθ(ω) || p(ω|X,Y)

)
=

∫
qθ(ω) log

qθ(ω)

p(ω|X,Y)
dω

=

∫
qθ(ω) log

qθ(ω)p(Y|X)

p(Y|X,ω)p(ω)
dω (Bayes′rule)

=

∫
qθ(ω) log

qθ(ω)

p(ω)
dω −

∫
qθ(ω) log p(Y|X,ω)dω +

∫
qθ(ω) log p(Y|X)dω

= KL
(
qθ(ω) || p(ω)

)
−
∫

qθ(ω) log p(Y|X,ω)dω︸ ︷︷ ︸
−LVI(θ)

=−ELBO: Evidence Lower BOund

+ log p(Y|X)︸ ︷︷ ︸
log evidence
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Variational Inference: Back to Optimization

▶ The variational inference problem is translated into ELBO maximization

θ∗ ∈ argmax
θ

LVI(θ)

= argmax
θ

∫
qθ(ω) log p(Y|X,ω)dω︸ ︷︷ ︸
Expected log likelihood

−KL
(
qθ(ω) || p(ω)

)

= argmax
θ

N∑
i=1

∫
qθ(ω) log p(yi|fω(xi))dω −KL

(
qθ(ω) || p(ω)

)
,

assuming that (xi,yi) are drawn independently from the data distribution

▶ fω(xi) is the model’s stochastic output

▶ However, the integral is still intractable for models with more than one hidden layer
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Monte-Carlo Approximation

▶ Monte-Carlo integration: Sample T realizations of the weights from the distribution qθ(ω)

1

T

T∑
t=1

log p(yi|f ω̂t (xi))
T→∞−→

∫
qθ(ω) log p(yi|fω(xi))dω

with ω̂t ∼ qθ(ω).1However, the distribution qθ(ω) is not known yet

▶ Re-parametrize qθ(ω): Let ω = {Wℓ}Lℓ=1, and re-write each column in Wℓ as

Wℓ,k = g(θℓ,k, ϵℓ,k)

with some distribution p(ϵℓ,k) that is parameter free

Ex: If qθ(ω) = N (ω;µ, σ2), then we can define ω = µ+ σϵ with ϵ ∼ N (0, 1)

1The hat denotes a realization of a random variable
Samar Hadou Uncertainty in Deep Learning 9
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Monte-Carlo Approximation

▶ Change of variables: ω = g(θ, ϵ) ⇐⇒ qθ(ω|ϵ) = δ (ω − g(θ, ϵ))

▶ Re-formulating our integral∫
qθ(ω) log p(yi|fω(xi))dω =

∫ ∫
qθ(ω|ϵ)p(ϵ) log p(yi|fω(xi))dωdϵ (total probability)

=

∫
p(ϵ)

(∫
δ (ω − g(θ, ϵ)) log p (yi|fω(xi)) dω

)
dϵ

=

∫
p(ϵ)log p(yi|fg(θ,ϵ)(xi))dϵ

with p(ϵ) =
∏

ℓ,k p(ϵℓ,k)

▶ Next step is to use Monte-Carlo integration with a single sample, i.e., T = 1
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Monte-Carlo Approximation

▶ The ELBO optimization problem becomes

θ∗ ∈ argmax
θ

N∑
i=1

log p
(
yi|fg(θ,ϵ̂i)(xi)

)
−KL

(
qθ(ω) || p(ω)

)

▶ For regression tasks: If we assume that p
(
yi|fg(θ,ϵ̂i)(xi)

)
= N

(
yi; f

g(θ,ϵ̂i)(xi), τ
−1I

)
, then

log p
(
yi|fg(θ,ϵ̂i)(xi)

)
= −

τ

2

∥∥∥yi − fg(θ,ϵ̂i)(xi)
∥∥∥2 + const

▶ Looks familiar, Huh?
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Dropout in Standard NNs: Stochastic Regularization

▶ The output of a feed-forward NN (without dropout) can be written as

fM1,...,ML (x) = σ
(
. . . σ

(
M2 σ (M1x)︸ ︷︷ ︸

h2

)
. . .
)

where Mℓ is a deterministic weight matrix and σ(.) is an activation function

▶ Dropout injects stochastic noise in the feature space {x,h2, . . . }, i.e.,

hℓ+1 = σ(Mℓ(hℓ ⊙ ϵ̂ℓ)) = σ(Mℓdiag(ϵ̂ℓ)hℓ) = σ(Ŵℓhℓ)

with ϵℓ ∼ Ber(pℓ), ℓ = 1, . . . , L and Wℓ,k = ϵℓMℓ,k

argmin
M1,...,ML

1

N

N∑
i=1

∥∥∥yi − fŴ1,...,ŴL (xi)
∥∥∥2 +

L∑
i=1

λi∥Mi∥2
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KL Condition: A Link between the Two Problems

▶ The two problems are equivalent when we pick a prior distribution p(ω) and a family of distributions
qθ(ω) that satisfy

KL
(
qθ(ω) || p(ω)

)
=

Nτ

2

L∑
i=1

λi∥Mi∥2

▶ When is it achievable?

▶ Under a prior distribution

p(ω) =
L∏

ℓ=1

p(Wℓ) =
L∏

ℓ=1

N (0, I/l2ℓ ),

with l2ℓ = 2Nτλℓ
pℓ

, and

▶ High dimensional random vectors Wℓ,k, ∀ℓ, k, which means the number of neurons at each layer
should be sufficiently large
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KL Condition: A Link between the Two Problems

Sketch of the proof :

1. Under the above assumptions, qθℓ,k (Wℓ,k) is a mixture of two Gaussian distributions:

▶ In Dropout,Wℓ,k = ϵℓMℓ,k ⇐⇒ p(Wℓ,k|ϵℓ) = δ(Wℓ,k − ϵℓMℓ,k)

qθℓ,k (Wℓ,k) =
1∑

ϵℓ=0

p(Wℓ,k|ϵℓ)p(ϵℓ) = pℓ N (Wℓ,k;Mℓ,k, σ
2I) + (1− pℓ) N (Wℓ,k;0, σ

2I)

2. KL divergence between qθℓ,k (Wℓ,k) and p(Wℓ,k) is

KL
(
qθℓ,k (Wℓ,k) || p(Wℓ,k)

)
= l2ℓ

pℓ

2
∥Mℓ,k∥2 + const

since the mixture components do not overlap in high dimension spaces

3. Total KL divergence is

KL
(
qθ(ω) || p(ω)

)
=
∑
ℓ,k

KL
(
qθℓ,k (Wℓ,k) || p(Wℓ,k)

)

Samar Hadou Uncertainty in Deep Learning 14



KL Condition: A Link between the Two Problems

Sketch of the proof :

1. Under the above assumptions, qθℓ,k (Wℓ,k) is a mixture of two Gaussian distributions:

▶ In Dropout,Wℓ,k = ϵℓMℓ,k ⇐⇒ p(Wℓ,k|ϵℓ) = δ(Wℓ,k − ϵℓMℓ,k)

qθℓ,k (Wℓ,k) =
1∑

ϵℓ=0

p(Wℓ,k|ϵℓ)p(ϵℓ) = pℓ N (Wℓ,k;Mℓ,k, σ
2I) + (1− pℓ) N (Wℓ,k;0, σ

2I)

2. KL divergence between qθℓ,k (Wℓ,k) and p(Wℓ,k) is

KL
(
qθℓ,k (Wℓ,k) || p(Wℓ,k)

)
= l2ℓ

pℓ

2
∥Mℓ,k∥2 + const

since the mixture components do not overlap in high dimension spaces

3. Total KL divergence is

KL
(
qθ(ω) || p(ω)

)
=
∑
ℓ,k

KL
(
qθℓ,k (Wℓ,k) || p(Wℓ,k)

)

Samar Hadou Uncertainty in Deep Learning 14



KL Condition: A Link between the Two Problems

Sketch of the proof :

1. Under the above assumptions, qθℓ,k (Wℓ,k) is a mixture of two Gaussian distributions:

▶ In Dropout,Wℓ,k = ϵℓMℓ,k ⇐⇒ p(Wℓ,k|ϵℓ) = δ(Wℓ,k − ϵℓMℓ,k)

qθℓ,k (Wℓ,k) =
1∑

ϵℓ=0

p(Wℓ,k|ϵℓ)p(ϵℓ) = pℓ N (Wℓ,k;Mℓ,k, σ
2I) + (1− pℓ) N (Wℓ,k;0, σ

2I)

2. KL divergence between qθℓ,k (Wℓ,k) and p(Wℓ,k) is

KL
(
qθℓ,k (Wℓ,k) || p(Wℓ,k)

)
= l2ℓ

pℓ

2
∥Mℓ,k∥2 + const

since the mixture components do not overlap in high dimension spaces

3. Total KL divergence is

KL
(
qθ(ω) || p(ω)

)
=
∑
ℓ,k

KL
(
qθℓ,k (Wℓ,k) || p(Wℓ,k)

)

Samar Hadou Uncertainty in Deep Learning 14



Monte-Carlo Dropout: Wrap-up

▶ Gal and his co-authors showed that a standard NN trained with dropout is equivalent to a Bayesian
NN.

▶ A standard NN learns a model that minimizes a loss function, while BNNs learn a distribution over the
models that maximizes an expected loglikelihood (plus regularization terms)

▶ Under the above conditions, the optimal weights Mℓ in a standard NN = the optimal parameter θ in a
Bayesian NN
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Uncertainty Estimates
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Uncertainty Estimates: Regression

▶ Recall that the predictive distribution is

p(y∗|x∗,X,Y) =

∫
p(y∗|fω(x∗))p(ω|X,Y)dω

replaced with qθ(y∗|x∗) =

∫
p(y∗|fω(x∗))qθ(ω)dω,

with p(y∗|fω(x∗)) = N (y∗; fω(x∗), τ−1I)

▶ Predictive Mean:

Eqθ(y∗|x∗)[y∗] =

∫
y∗qθ(y∗|x∗)dy∗ =

∫ (∫
y∗p(y∗|fω(x∗))dy∗

)
qθ(ω)dω

=

∫
fω(x∗)qθ(ω)dω (approximated by Monte-Carlo integration)

▶ In testing, sample T realization of the model (using dropout) to have Ẽ[y∗] =
1
T

∑T
t=1 f

ω̂t (x∗)
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Uncertainty Estimates: Regression

▶ Predictive variance as a measure of uncertainty

Ṽar[y∗] = τ−1I+
1

T

T∑
t=1

f ω̂t (x∗)f
ω̂t (x∗)

⊤

︸ ︷︷ ︸
second moment

−Ẽ[y∗]Ẽ[y∗]
⊤

▶ Predictive log likelihood as a measure of uncertainty

log qθ(y∗|x∗) = log

∫
p(y∗|fω(x∗))qθ(ω)dω

=⇒ l̃ogqθ(y∗|x∗) = log

(
1

T

T∑
t=1

p(y∗|f ω̂t (x∗))

)

= logsumexp

(
−τ

2

∥∥∥y∗ − f ω̂t (x∗)
∥∥∥2)+

1

2
log τ + const

▶ High uncertainty = low τ = high penalty from the second term

▶ Over-confident model (high τ) with poor mean estimation = high penalty from the first term
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−Ẽ[y∗]Ẽ[y∗]
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Uncertainty Estimates: Regression

CO2 concentrations dataset. (Top) Standard Dropout, (Middle) MC dropout with Relu, and (Bottom)
with Tanh. Different shades of blue represent half a standard deviation.
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Uncertainty Estimates: Classification

▶ Add a softmax layer, Softmax(fω(x)), to predict the likelihood of each class

▶ Sample T realizations of the model and let the prediction be

c∗ = argmax
c=1,...,C

T∑
t=1

1[ŷt = c]

▶ Predictive Entropy as an uncertainty estimate

H[y∗|x∗] = −
∑
c

qθ(y∗ = c|x∗) log (qθ(y∗ = c|x∗))

where we approximate the predictive distribution with

qθ(y∗ = c|x∗) =

∫
p(y∗ = c|x∗,ω)︸ ︷︷ ︸
Softmax outputs

qθ(ω)dω ≈
1

T

T∑
t=1

p(y∗ = c|x∗, ω̂t)

▶ ∃c, qθ(y∗ = c|x∗) = 1 =⇒ H[y∗|x∗] ↓, and qθ(y∗ = c|x∗) ∼ Unif =⇒ H[y∗|x∗] ↑
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Aleatoric Uncertainty Estimate

▶ In order to let BNNs learn aleatoric uncertainty, we parameterize τ as τω(x)

N (y; fω(x), τ−1I) =⇒ N (y; fω(x), τω(x)−1)

▶ The goal is to learn distributions over the weights used for both fω(x) and τω(x) following the same
framework

▶ Predictive variance is calculated as

Ṽar[y∗] =
1

T

T∑
t=1

τ ω̂t (x)I+
1

T

T∑
t=1

f ω̂t (x∗)f
ω̂t (x∗)

⊤ − Ẽ[y∗]Ẽ[y∗]
⊤
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Uncertainty In Images: Depth prediction

Left to Right: input image, ground truth, depth prediction, aleatoric uncertainty, epistemic uncertainty.
Make3D does not provide labels for depth greater than 70m
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Final Remarks
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Final Remarks
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Final Remarks

▶ Every time we train a standard NN, we reach a local minimum =⇒ multimodal posterior

▶ MC dropout:

qθℓ,k (Wℓ,k) = pℓ N (Wℓ,k;Mℓ,k, σ
2I)

+ (1− pℓ) N (Wℓ,k;0, σ
2I)︸ ︷︷ ︸

?

Large gap in computing the predictive distribution

p(y∗|x∗,X,Y) =

∫
p(y∗|fω(x∗))p(ω|X,Y)dω

▶ Deep Ensembles

Check Rahul’s presentation for more details!
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